Quantum computational chemistry

Quantum computational chemistry is an emerging field that exploits quantum computing to simulate chemical systems. Despite quantum mechanics' foundational role in understanding chemical behaviors, traditional computational approaches face significant challenges, largely due to the complexity and computational intensity of quantum mechanical equations. This complexity arises from the exponential growth of a quantum system's wave function with each added particle, making exact simulations on classical computers inefficient.[1]

Efficient quantum algorithms for chemistry problems are expected to have run-times and resource requirements that scale polynomially with system size and desired accuracy. Experimental efforts have validated proof-of-principle chemistry calculations, though currently limited to small systems.[1]

  1. ^ a b Gieres, François (2000). "Mathematical surprises and Dirac's formalism in quantum mechanics". Reports on Progress in Physics. 63 (12): 1893–1931. arXiv:quant-ph/9907069. Bibcode:2000RPPh...63.1893G. doi:10.1088/0034-4885/63/12/201. S2CID 250880658.