Quantum discord

In quantum information theory, quantum discord is a measure of nonclassical correlations between two subsystems of a quantum system. It includes correlations that are due to quantum physical effects but do not necessarily involve quantum entanglement.

The notion of quantum discord was introduced by Harold Ollivier and Wojciech H. Zurek[1][2] and, independently by Leah Henderson and Vlatko Vedral.[3] Olliver and Zurek referred to it also as a measure of quantumness of correlations.[2] From the work of these two research groups it follows that quantum correlations can be present in certain mixed separable states;[4] In other words, separability alone does not imply the absence of quantum correlations. The notion of quantum discord thus goes beyond the distinction which had been made earlier between entangled versus separable (non-entangled) quantum states.

  1. ^ Wojciech H. Zurek, Einselection and decoherence from an information theory perspective, Annalen der Physik vol. 9, 855–864 (2000) abstract
  2. ^ a b Harold Ollivier and Wojciech H. Zurek, Quantum Discord: A Measure of the Quantumness of Correlations, Physical Review Letters vol. 88, 017901 (2001) abstract
  3. ^ L. Henderson and V. Vedral: Classical, quantum and total correlations, Journal of Physics A 34, 6899 (2001), doi:10.1088/0305-4470/34/35/315 [1]
  4. ^ Paolo Giorda, Matteo G. A. Paris: Gaussian quantum discord, quant-ph arXiv:1003.3207v2 (submitted on 16 Mar 2010, version of 22 March 2010) p. 1