Quantum imaging

Quantum imaging[1][2] is a new sub-field of quantum optics that exploits quantum correlations such as quantum entanglement of the electromagnetic field in order to image objects with a resolution or other imaging criteria that is beyond what is possible in classical optics. Examples of quantum imaging are quantum ghost imaging,[3] quantum lithography,[4] imaging with undetected photons,[5] sub-shot-noise imaging,[6][7] and quantum sensing. Quantum imaging may someday be useful for storing patterns of data in quantum computers and transmitting large amounts of highly secure encrypted information. Quantum mechanics has shown that light has inherent “uncertainties” in its features, manifested as moment-to-moment fluctuations in its properties. Controlling these fluctuations—which represent a sort of “noise”—can improve detection of faint objects, produce better amplified images, and allow workers to more accurately position laser beams.[8]

  1. ^ Lugiato, L. A.; Gatti, A.; Brambilla, E. (2002). "Quantum imaging". Journal of Optics B: Quantum and Semiclassical Optics. 4 (3): S176–S183. arXiv:quant-ph/0203046. Bibcode:2002JOptB...4S.176L. doi:10.1088/1464-4266/4/3/372. S2CID 9640455.
  2. ^ Shih, Yanhua (2007). "Quantum Imaging". IEEE Journal of Selected Topics in Quantum Electronics. 13 (4): 1016–1030. arXiv:0707.0268. Bibcode:2007IJSTQ..13.1016S. doi:10.1109/JSTQE.2007.902724. S2CID 147702680.
  3. ^ Pittman, T. B.; Shih, Y. H.; Strekalov, D. V.; Sergienko, A. V. (1995-11-01). "Optical imaging by means of two-photon quantum entanglement". Physical Review A. 52 (5): R3429–R3432. Bibcode:1995PhRvA..52.3429P. doi:10.1103/PhysRevA.52.R3429. PMID 9912767.
  4. ^ Boto, Agedi N.; Kok, Pieter; Abrams, Daniel S.; Braunstein, Samuel L.; Williams, Colin P.; Dowling, Jonathan P. (2000-09-25). "Quantum Interferometric Optical Lithography: Exploiting Entanglement to Beat the Diffraction Limit". Physical Review Letters. 85 (13): 2733–2736. arXiv:quant-ph/9912052. Bibcode:2000PhRvL..85.2733B. doi:10.1103/PhysRevLett.85.2733. PMID 10991220. S2CID 7373285.
  5. ^ Lemos, Gabriela Barreto; Borish, Victoria; Cole, Garrett D.; Ramelow, Sven; Lapkiewicz, Radek; Zeilinger, Anton (August 2014). "Quantum imaging with undetected photons". Nature. 512 (7515): 409–412. arXiv:1401.4318. Bibcode:2014Natur.512..409L. doi:10.1038/nature13586. ISSN 1476-4687. PMID 25164751. S2CID 4450556.
  6. ^ Brida, G.; Genovese, M.; Ruo Berchera, I. (April 2010). "Experimental realization of sub-shot-noise quantum imaging". Nature Photonics. 4 (4): 227–230. arXiv:1004.1274. Bibcode:2010NaPho...4..227B. doi:10.1038/nphoton.2010.29. ISSN 1749-4893. S2CID 118413473.
  7. ^ Sabines-Chesterking, J.; Sabines-Chesterking, J.; McMillan, A. R.; Moreau, P. A.; Moreau, P. A.; Joshi, S. K.; Knauer, S.; Knauer, S.; Johnston, E.; Rarity, J. G.; Matthews, J. C. F. (2019-10-14). "Twin-beam sub-shot-noise raster-scanning microscope". Optics Express. 27 (21): 30810–30818. Bibcode:2019OExpr..2730810S. doi:10.1364/OE.27.030810. hdl:1983/6c53cba1-83e1-468b-a8d2-937888fcc44d. ISSN 1094-4087. PMID 31684324.
  8. ^ Newswise: Physicists Produce Quantum-Entangled Images Retrieved on June 12, 2008.