Quantum metrological gain

In quantum metrology in a multiparticle system, the quantum metrological gain for a quantum state is defined as the sensitivity of phase estimation achieved by that state divided by the maximal sensitivity achieved by separable states, i.e., states without quantum entanglement. In practice, the best separable state is the trivial fully polarized state, in which all spins point into the same direction. If the metrological gain is larger than one then the quantum state is more useful for making precise measurements than separable states. Clearly, in this case the quantum state is also entangled.