In mathematics, especially representation theory, a quiver is another name for a multidigraph; that is, a directed graph where loops and multiple arrows between two vertices are allowed. Quivers are commonly used in representation theory: a representation V of a quiver assigns a vector space V(x) to each vertex x of the quiver and a linear map V(a) to each arrow a.
In category theory, a quiver can be understood to be the underlying structure of a category, but without composition or a designation of identity morphisms. That is, there is a forgetful functor from Cat (the category of categories) to Quiv (the category of multidigraphs). Its left adjoint is a free functor which, from a quiver, makes the corresponding free category.