R Coronae Borealis variable

Visual light curve for RY Sagittarii, 1988–2015, showing classic behaviour for this type of variable

An R Coronae Borealis variable (abbreviated RCB,[1] R CrB[2]) is an eruptive variable star that varies in luminosity in two modes, one low amplitude pulsation (a few tenths of a magnitude), and one irregular, unpredictably-sudden fading by 1 to 9 magnitudes. The prototype star R Coronae Borealis was discovered by the English amateur astronomer Edward Pigott in 1795, who first observed the enigmatic fadings of the star. Only about 150 RCB stars[3] are currently known in our Galaxy while up to 1000 were expected,[4] making this class a very rare kind of star.

It is increasingly suspected that R Coronae Borealis (RCB) stars – rare hydrogen-deficient and carbon-rich supergiant stars – are the product of mergers of white-dwarfs in the intermediary mass regime (total mass between 0.6 and 1.2 M).[5] The fading is caused by condensation of carbon to soot, making the star fade in visible light while measurements in infrared light exhibit no real luminosity decrease. R Coronae Borealis variables are typically supergiant stars in the spectral classes F and G (by convention called "yellow"), with typical C2 and CN molecular bands, characteristic of yellow supergiants. RCB star atmospheres do however lack hydrogen by an abundance of 1 part per 1,000 down to 1 part per 1,000,000 relative to helium and other chemical elements, while the universal abundance of hydrogen is about 3 to 1 relative to helium.

  1. ^ Rosenbush, A. E. (1996). "What causes the R Corona Borealis type minimum: dust cloud or dust shell?". Hydrogen Deficient Stars – Astronomical Society of the Pacific Conference Series. 96: 91. Bibcode:1996ASPC...96...91R.
  2. ^ Iben, Icko Jr.; Tutukov, Alexander V.; Yungelson, Lev R. (1996). "On the Origin of Hydrogen-deficient Supergiants and Their Relation to R Coronae Borealis Stars and Non-DA White Dwarfs". Astrophysical Journal. 456 (published January 1996): 750. Bibcode:1996ApJ...456..750I. doi:10.1086/176694.
  3. ^ "Tracking down R Coronae Borealis". Retrieved 2022-05-17.
  4. ^ Tisserand, P.; Clayton, G. C.; Bessell, M. S.; Welch, D. L.; Kamath, D.; Wood, P. R.; Wils, P.; Wyrzykowski, Ł; Mróz, P. (2020). "A plethora of new R Coronae Borealis stars discovered from a dedicated spectroscopic follow-up survey". Astronomy & Astrophysics. 635: A14. arXiv:1809.01743. Bibcode:2020A&A...635A..14T. doi:10.1051/0004-6361/201834410. S2CID 119547939.
  5. ^ Clayton, Geoffrey C. (2012-06-15). "What are the R Coronae Borealis Stars?". Journal of the American Association of Variable Star Observers (Jaavso). 40 (1): 539. arXiv:1206.3448. Bibcode:2012JAVSO..40..539C.