Radar MASINT

Intelligence cycle management
Intelligence collection management
MASINT

Radar MASINT is a subdiscipline of measurement and signature intelligence (MASINT) and refers to intelligence gathering activities that bring together disparate elements that do not fit within the definitions of signals intelligence (SIGINT), imagery intelligence (IMINT), or human intelligence (HUMINT).

According to the United States Department of Defense, MASINT is technically derived intelligence (excluding traditional imagery IMINT and signals intelligence) that – when collected, processed, and analyzed by dedicated MASINT systems – results in intelligence that detects, tracks, identifies, or describes the distinctive characteristics target sources. in the US MASINT was recognized as a formal intelligence discipline in 1986.[1][2]

As with many branches of MASINT, specific techniques may overlap with the six major conceptual disciplines of MASINT defined by the Center for MASINT Studies and Research, which divides MASINT into electro-optical, nuclear, geophysical, radar, materials, and radiofrequency disciplines.[3]

Radar MASINT is complementary to SIGINT. While the ELINT subdiscipline of SIGINT analyzes the structure of radar directed on a target, radar MASINT is concerned with using specialized radar techniques that measure characteristics of targets.

Another MASINT subdiscipline, radiofrequency MASINT, considers the unintentional radiation emitted from a radar transmitter (e.g., sidelobes)

MASINT radar sensors may be on space, sea, air, and fixed or mobile platforms. Specialized MASINT radar techniques include line-of-sight (LOS), over-the-horizon, synthetic aperture radar (SAR), inverse synthetic aperture radar (ISAR) and multistatic. It involves the active or passive collection of energy reflected from a target or object by LOS, bistatic, or over-the-horizon radar systems. RADINT collection provides information on radar cross-sections, tracking, precise spatial measurements of components, motion and radar reflectance, and absorption characteristics for dynamic targets and objectives.

Radar MASINT can be active, with the MASINT platform both transmitting and receiving. In multistatic applications, there is physical separation among two or more receivers and transmitters. MASINT can also passively receive signals reflected from an enemy beam.

As with many intelligence disciplines, it can be a challenge to integrate the technologies into the active services, so they can be used by warfighters.[4] Still, radar has characteristics especially appropriate for MASINT. While there are radars (ISAR) that can produce images, radar pictures are generally not as sharp as those taken by optical sensors, but radar is largely independent of day or night, cloud or sun. Radar can penetrate many materials, such as wooden buildings. Improving the resolution of an imaging radar requires that the antenna size is many times that of the radar wavelength. Wavelength is inversely proportional to frequency, so increasing the radar frequency can improve resolution. It can be difficult to generate high power at the higher frequencies, or problems such as attenuation by water in the atmosphere limit performance. In general, for a fixed sensor, electro-optical sensors, in UV, visual, or infrared spectra, will outperform imaging radar.[5]

SAR and ISAR are means of combining multiple radar samples, taken over time, to create the effect of a much larger antenna, far larger than would physically be possible, for a given radar frequency. As SAR and ISAR develop better resolution, there can be an argument if they still are MASINT sensors, or if they create images sufficiently sharp that they properly are IMINT sensors. Radar can also merge with other sensors to give even more information, such as moving target indicator. Radar generally must acquire its images from an angle, which often means that it can look into the sides of buildings, producing a movie-like record over time, and being able to form three-dimensional views over time.

  1. ^ Interagency OPSEC Support Staff (IOSS) (May 1996). "Operations Security Intelligence Threat Handbook: Section 2, Intelligence Collection Activities and Disciplines". IOSS Section 2. Retrieved 3 October 2007.
  2. ^ US Army (May 2004). "Chapter 9: Measurement and Signals Intelligence". Field Manual 2-0, Intelligence. Department of the Army. FM2-0Ch9. Retrieved 3 October 2007.
  3. ^ Center for MASINT Studies and Research. "Center for MASINT Studies and Research". Air Force Institute of Technology. CMSR. Archived from the original on 7 July 2007. Retrieved 3 October 2007.
  4. ^ Ives, John W. (9 April 2002). "Army Vision 2010: Integrating Measurement and Signature Intelligence". US Army War College. Archived from the original on 25 April 2008. Retrieved 3 October 2007.
  5. ^ Sandia National Laboratories (2005). "MTI & CCD Synthetic Aperture Radar Imagery". Archived from the original on 11 September 2007. Retrieved 18 October 2007.