Radiation hardening

Radiation hardening is the process of making electronic components and circuits resistant to damage or malfunction caused by high levels of ionizing radiation (particle radiation and high-energy electromagnetic radiation),[1] especially for environments in outer space (especially beyond low Earth orbit), around nuclear reactors and particle accelerators, or during nuclear accidents or nuclear warfare.

Most semiconductor electronic components are susceptible to radiation damage, and radiation-hardened (rad-hard) components are based on their non-hardened equivalents, with some design and manufacturing variations that reduce the susceptibility to radiation damage. Due to the low demand and the extensive development and testing required to produce a radiation-tolerant design of a microelectronic chip, the technology of radiation-hardened chips tends to lag behind the most recent developments.[2] They also typically cost more than their commercial counterparts.[2]

Radiation-hardened products are typically tested to one or more resultant-effects tests, including total ionizing dose (TID), enhanced low dose rate effects (ELDRS), neutron and proton displacement damage, and single event effects (SEEs).

  1. ^ Messenger, George C. "Radiation hardening". AccessScience. doi:10.1036/1097-8542.566850.
  2. ^ a b Heyman, Karen (2024-02-15). "SRAM Scaling Issues, And What Comes Next". Semiconductor Engineering. Retrieved 2024-10-24.