Hypothesis regarding low doses of ionizing radiation on health
Radiation hormesis is the hypothesis that low doses of ionizing radiation (within the region of and just above natural background levels) are beneficial, stimulating the activation of repair mechanisms that protect against disease, that are not activated in absence of ionizing radiation. The reserve repair mechanisms are hypothesized to be sufficiently effective when stimulated as to not only cancel the detrimental effects of ionizing radiation but also inhibit disease not related to radiation exposure (see hormesis).[1][2][3][4] It has been a mainstream concept since at least 2009.[5][unreliable source?]
While the effects of high and acute doses of ionising radiation are easily observed and understood in humans (e.g.Japanese atomic bomb survivors), the effects of low-level radiation are very difficult to observe and highly controversial. This is because the baseline cancer rate is already very high and the risk of developing cancer fluctuates 40% because of individual life style and environmental effects,[6][7] obscuring the subtle effects of low-level radiation. An acute effective dose of 100 millisieverts may increase cancer risk by ~0.8%. However, children are particularly sensitive to radioactivity, with childhood leukemias and other cancers increasing even within natural and man-made background radiation levels (under 4 mSv cumulative with 1 mSv being an average annual dose from terrestrial and cosmic radiation, excluding radon which primarily doses the lung).[8][9] There is limited evidence that exposures around this dose level will cause negative subclinical health impacts to neural development.[10] Students born in regions of higher Chernobyl fallout performed worse in secondary school, particularly in mathematics. "Damage is accentuated within families (i.e., siblings comparison) and among children born to parents with low education..." who often don't have the resources to overcome this additional health challenge.[11]
Hormesis remains largely unknown to the public. Government and regulatory bodies disagree on the existence of radiation hormesis and research points to the "severe problems and limitations" with the use of hormesis in general as the "principal dose-response default assumption in a risk assessment process charged with
ensuring public health protection."[12]
Quoting results from a literature database research, the Académie des Sciences – Académie nationale de Médecine (French Academy of Sciences – National Academy of Medicine) stated in their 2005 report concerning the effects of low-level radiation that many laboratory studies have observed radiation hormesis.[13][14] However, they cautioned that it is not yet known if radiation hormesis occurs outside the laboratory, or in humans.[15]
^Feinendegen, L E (2005). "Evidence for beneficial low level radiation effects and radiation hormesis". British Journal of Radiology. 78 (925): 3–7. doi:10.1259/bjr/63353075. PMID15673519.
^Allison, Wade (2009). Radiation and Reason: The Impact of Science on a Culture of Fear. York, England: York Publishing Services. p. 2. ISBN978-0-9562756-1-5.
^Calabrese, Edward J (2004). "Hormesis: From marginalization to mainstream". Toxicology and Applied Pharmacology. 197 (2): 125–36. doi:10.1016/j.taap.2004.02.007. PMID15163548.
^Duport, P. (2003). "A database of cancer induction by low-dose radiation in mammals: Overview and initial observations". International Journal of Low Radiation. 1: 120–31. doi:10.1504/IJLR.2003.003488.
^Aurengo (2005-03-30). "Dose-effect relationships and estimation of the carcinogenic effects of low doses of ionizing radiation". Académie des Sciences & Académie nationale de Médecine. CiteSeerX10.1.1.126.1681. {{cite journal}}: Cite journal requires |journal= (help)