Rain garden

A rain garden in Wheaton, Maryland during the winter

Rain gardens, also called bioretention facilities, are one of a variety of practices designed to increase rain runoff reabsorption by the soil. They can also be used to treat polluted stormwater runoff. Rain gardens are designed landscape sites that reduce the flow rate, total quantity, and pollutant load of runoff from impervious urban areas like roofs, driveways, walkways, parking lots, and compacted lawn areas.[1] Rain gardens rely on plants and natural or engineered soil medium to retain stormwater and increase the lag time of infiltration, while remediating and filtering pollutants carried by urban runoff. Rain gardens provide a method to reuse and optimize any rain that falls, reducing or avoiding the need for additional irrigation. A benefit of planting rain gardens is the consequential decrease in ambient air and water temperature, a mitigation that is especially effective in urban areas containing an abundance of impervious surfaces that absorb heat in a phenomenon known as the heat-island effect.[2]

Rain garden plantings commonly include wetland edge vegetation, such as wildflowers, sedges, rushes, ferns, shrubs and small trees. These plants take up nutrients and water that flow into the rain garden, and they release water vapor back to the atmosphere through the process of transpiration.[3] Deep plant roots also create additional channels for stormwater to filter into the ground. Root systems enhance infiltration, maintain or even augment soil permeability, provide moisture redistribution, and sustain diverse microbial populations involved in biofiltration.[4] Microbes help to break down organic compounds (including some pollutants) and remove nitrogen.

Rain gardens are beneficial for many reasons; they improve water quality by filtering runoff, provide localized flood control, create aesthetic landscaping sites, and provide diverse planting opportunities. They also encourage wildlife and biodiversity, tie together buildings and their surrounding environments in integrated and environmentally advantageous ways. Rain gardens can improve water quality in nearby bodies of water and recharge depleted groundwater supply. Rain gardens also reduce the amount of polluted runoff that enters the storm sewer system, which discharges directly to surface waters and causes erosion, water pollution and flooding.[5] Rain gardens also reduce energy consumption by decreasing the load on conventional stormwater infrastructure.

  1. ^ "Rain Gardens". Soak Up the Rain. EPA. 2016-04-28.
  2. ^ France, R. L. (Robert Lawrence) (2002). Handbook of water sensitive planning and design. Lewis Publishers. ISBN 978-1-4200-3242-0. OCLC 181092577.
  3. ^ "Evapotranspiration and the Water Cycle". www.usgs.gov. Retrieved 2019-08-16.
  4. ^ B.C. Wolverton, Ph.D., R.C. McDonald-McCaleb (1986). “Biotransformation of Priority Pollutants Using Biofilms and Vascular Plants.” Archived April 7, 2009, at the Wayback Machine Journal of the Mississippi Academy of Sciences. Vol. XXXI, pp. 79-89.
  5. ^ University of Rhode Island. Healthy Landscapes Program. “Rain Gardens: Enhancing your home landscape and protecting water quality.” Archived 2015-10-23 at the Wayback Machine