Random laser

A random laser (RL) is a laser in which optical feedback is provided by scattering particles.[1] As in conventional lasers, a gain medium is required for optical amplification. However, in contrast to Fabry–Pérot cavities and distributed feedback lasers, neither reflective surfaces nor distributed periodic structures are used in RLs, as light is confined in an active region by diffusive elements that either may or may not be spatially distributed inside the gain medium.

The main principle behind a random laser is to increase the light path with disordered media; this can be done by diffusive disordered media or by using strong localization in a disordered media, with laser active background.

Random lasing has been reported from a large variety of materials, e.g. colloidal solutions of dye and scattering particles,[2] semiconductor powders,[3] Semiconductor polycrystalline thin films, [4] optical fibers [5] and polymers.[6] Due to the output emission with low spatial coherence and laser-like energy conversion efficiency, RLs are attractive devices for energy efficient illumination applications.[7] The concept of random lasing can also be time-reversed, resulting in a random anti-laser,[8] which is a disordered medium that can perfectly absorb incoming coherent radiation.

  1. ^ Noginov, M. A. (2005). "Solid-State Random Lasers". Springer Series in Optical Sciences. Vol. 105. New York: Springer-Verlag. doi:10.1007/b106788. ISBN 0-387-23913-8.
  2. ^ Lawandy, N. M.; Balachandran, R. M.; Gomes, A. S. L.; Sauvain, E. (1994-03-31). "Laser action in strongly scattering media". Nature. 368 (6470). Springer Science and Business Media LLC: 436–438. Bibcode:1994Natur.368..436L. doi:10.1038/368436a0. ISSN 0028-0836. S2CID 26987876.
  3. ^ Cao, H.; Zhao, Y. G.; Ong, H. C.; Ho, S. T.; Dai, J. Y.; Wu, J. Y.; Chang, R. P. H. (1998-12-21). "Ultraviolet lasing in resonators formed by scattering in semiconductor polycrystalline films". Applied Physics Letters. 73 (25). AIP Publishing: 3656–3658. Bibcode:1998ApPhL..73.3656C. doi:10.1063/1.122853. ISSN 0003-6951.
  4. ^ Rajan, Rahul A.; Tao, Huang; Yu, Weili; Yang, Jianjun (1 February 2023). "Space-resolved light emitting and lasing behaviors of crystalline perovskites upon femtosecond laser ablation". Materials Today Physics. 31: 101000. doi:10.1016/j.mtphys.2023.101000. ISSN 2542-5293. S2CID 256603002.
  5. ^ Turitsyn, Sergei K.; Babin, Sergey A.; El-Taher, Atalla E.; Harper, Paul; Churkin, Dmitriy V.; Kablukov, Sergey I.; Ania-Castañón, Juan Diego; Karalekas, Vassilis; Podivilov, Evgenii V. (2010-02-07). "Random distributed feedback fibre laser". Nature Photonics. 4 (4). Springer Science and Business Media LLC: 231–235. Bibcode:2010NaPho...4..231T. doi:10.1038/nphoton.2010.4. ISSN 1749-4885. S2CID 39672706.
  6. ^ Sznitko, Lech; Mysliwiec, Jaroslaw; Miniewicz, Andrzej (2015-04-28). "The role of polymers in random lasing". Journal of Polymer Science Part B: Polymer Physics. 53 (14). Wiley: 951–974. Bibcode:2015JPoSB..53..951S. doi:10.1002/polb.23731. ISSN 0887-6266.
  7. ^ Redding, Brandon; Cao, Hui; Choma, Michael A. (2012-12-01). "Speckle-Free Laser Imaging with Random Laser Illumination". Optics and Photonics News. 23 (12). The Optical Society: 30. doi:10.1364/opn.23.12.000030. ISSN 1047-6938.
  8. ^ Pichler, Kevin; Kühmayer, Matthias; Böhm, Julian; Brandstötter, Andre; Ambichl, Philipp; Kuhl, Ulrich; Rotter, Stefan (2019-03-21). "Random anti-lasing through coherent perfect absorption in a disordered medium". Nature. 567 (7748): 351–355. Bibcode:2019Natur.567..351P. doi:10.1038/s41586-019-0971-3. ISSN 0028-0836. PMID 30833737. S2CID 71144725.