Recovery (metallurgy)

In metallurgy, recovery is a process by which a metal or alloy's deformed grains can reduce their stored energy by the removal or rearrangement of defects in their crystal structure. These defects, primarily dislocations, are introduced by plastic deformation of the material and act to increase the yield strength of a material. Since recovery reduces the dislocation density, the process is normally accompanied by a reduction in a material's strength and a simultaneous increase in the ductility. As a result, recovery may be considered beneficial or detrimental depending on the circumstances.

Recovery is related to the similar processes of recrystallization and grain growth, each of them being stages of annealing. Recovery competes with recrystallization, as both are driven by the stored energy, but is also thought to be a necessary prerequisite for the nucleation of recrystallized grains. It is so called because there is a recovery of the electrical conductivity due to a reduction in dislocations. This creates defect-free channels, giving electrons an increased mean free path.[1]

  1. ^ Callister, William D. (2007). Materials Science and Engineering, An Introduction. John Wiley & Sons, Inc. ISBN 9780471736967.