A Reeb graph[1] (named after Georges Reeb by René Thom) is a mathematical object reflecting the evolution of the level sets of a real-valued function on a manifold.[2]
According to [3] a similar concept was introduced by G.M. Adelson-Velskii and A.S. Kronrod and applied to analysis of Hilbert's thirteenth problem.[4] Proposed by G. Reeb as a tool in Morse theory,[5] Reeb graphs are the natural tool to study multivalued functional relationships between 2D scalar fields , , and arising from the conditions
and , because these relationships are single-valued when restricted to a region associated with an individual edge of the Reeb graph. This general principle was first used to study neutral surfaces in oceanography.[6]
^ abGorban, Alexander N. (2013). "Thermodynamic Tree: The Space of Admissible Paths". SIAM Journal on Applied Dynamical Systems. 12 (1): 246–278. arXiv:1201.6315. doi:10.1137/120866919. S2CID5706376.
^G. M. Adelson-Velskii, A. S. Kronrod, About level sets of continuous functions with partial derivatives, Dokl. Akad. Nauk SSSR, 49 (4) (1945), pp. 239–241.
^G. Reeb, Sur les points singuliers d'une forme de Pfaff complètement intégrable ou d'une fonction numérique, C. R. Acad. Sci. Paris 222 (1946) 847–849
^M. Hilaga, Y. Shinagawa, T. Kohmura and T.L. Kunii, 2001, August. Topology matching for fully automatic similarity estimation of 3D shapes. In Proceedings of the 28th annual conference on Computer graphics and interactive techniques (pp. 203-212). ACM.