This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
Renewable energy in Denmark | |
---|---|
Renewable energy (RE) | |
RE as % of gross energy consumption | 32.9%[a] (2018)[2]: 16 |
Renewable electricity | |
Domestic electricity supply generated by RE | 71.9% (2021)[3] |
RE generated / Net electricity generation | 21,043 / 29,453 GWh (2017)[4] |
Record % RE covered electricity consumption | 138.7% (26/7/15 wind only)[citation needed] |
Installed capacity | |
Wind turbines | 6.1 GW[2]: 9 |
Bio energy (2014) | 1 GW (excluding waste; 2014)[citation needed] |
Solar power | 1 GW (2018)[2]: 10 |
Hydro power | <0.01 GW (2018)[2]: 10 |
Denmark is a leading country in renewable energy production and usage. Renewable energy sources collectively produced 81% of Denmark's electricity generation in 2022,[5] and are expected to provide 100% of national electric power production from 2030.[6] Including energy use in the heating/cooling and transport sectors, Denmark is expected to reach 100% renewable energy in 2050, up from the 34% recorded in 2021.[7][8]
In the heating sector the country has long used and continues to develop district heating (DH) networks. Hot water or steam is produced centrally and then distributed through a network of insulated pipes to high population areas. Houses within a district heating area have heat exchangers installed instead of boilers for their heating and hot water requirements. The heat exchanger keeps the two water systems separate and means that heat can be adjusted as with a familiar domestic boiler. One simple but important innovation in the district heating network was the development of internally insulated pipes. The two pipes taking and receiving the return of water are placed inside a much larger pipe and insulating material is set so as to fill the figure eight shaped void between the two smaller and the large pipe. In 2013 district heating supplied over 60% of all households in Denmark with heating and hot water.[9] The development of district heating technology has led Denmark to become a world leader in industrial pump and thermostat designs and its products are used in many industries worldwide.
Cogeneration is also widely used. This is a process that extracts the waste heat produced when generating electricity. Power stations designed to do this are known as Combined Heat and Power (CHP) stations. CHP stations in Denmark are often sized to provide the heat required for the local district heating system. Thus CHP stations produce both electricity for the grid and heat for district heating systems. Heat can be stored in large industrial hot water tanks for several days allowing electricity and heat supply to be provided time independently from each other. By 2013 the use of CHP stations had reduced the overall energy consumption in Denmark by 11%.[9]
Danish electricity generation has become increasingly decentralised with a move away from production in the large central power stations to many smaller locally based and mostly CHP stations. Many of these smaller stations use locally sourced bio energy sources including straw and wood pellets.
energy statistics 2018
was invoked but never defined (see the help page).2018 report
was invoked but never defined (see the help page).:10
was invoked but never defined (see the help page).
Cite error: There are <ref group=lower-alpha>
tags or {{efn}}
templates on this page, but the references will not show without a {{reflist|group=lower-alpha}}
template or {{notelist}}
template (see the help page).