This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
A repeating decimal or recurring decimal is a decimal representation of a number whose digits are eventually periodic (that is, after some place, the same sequence of digits is repeated forever); if this sequence consists only of zeros (that is if there is only a finite number of nonzero digits), the decimal is said to be terminating, and is not considered as repeating.
It can be shown that a number is rational if and only if its decimal representation is repeating or terminating. For example, the decimal representation of 1/3 becomes periodic just after the decimal point, repeating the single digit "3" forever, i.e. 0.333.... A more complicated example is 3227/555, whose decimal becomes periodic at the second digit following the decimal point and then repeats the sequence "144" forever, i.e. 5.8144144144.... Another example of this is 593/53, which becomes periodic after the decimal point, repeating the 13-digit pattern "1886792452830" forever, i.e. 11.18867924528301886792452830....
The infinitely repeated digit sequence is called the repetend or reptend. If the repetend is a zero, this decimal representation is called a terminating decimal rather than a repeating decimal, since the zeros can be omitted and the decimal terminates before these zeros.[1] Every terminating decimal representation can be written as a decimal fraction, a fraction whose denominator is a power of 10 (e.g. 1.585 = 1585/1000); it may also be written as a ratio of the form k/2n·5m (e.g. 1.585 = 317/23·52). However, every number with a terminating decimal representation also trivially has a second, alternative representation as a repeating decimal whose repetend is the digit 9. This is obtained by decreasing the final (rightmost) non-zero digit by one and appending a repetend of 9. Two examples of this are 1.000... = 0.999... and 1.585000... = 1.584999.... (This type of repeating decimal can be obtained by long division if one uses a modified form of the usual division algorithm.[2])
Any number that cannot be expressed as a ratio of two integers is said to be irrational. Their decimal representation neither terminates nor infinitely repeats, but extends forever without repetition (see § Every rational number is either a terminating or repeating decimal). Examples of such irrational numbers are √2 and π.[3]