In the mathematical field of representation theory, a representation of a Lie superalgebra is an action of Lie superalgebra L on a Z2-graded vector space V, such that if A and B are any two pure elements of L and X and Y are any two pure elements of V, then
Equivalently, a representation of L is a Z2-graded representation of the universal enveloping algebra of L which respects the third equation above.