This article includes a list of general references, but it lacks sufficient corresponding inline citations. (April 2014) |
In mathematics, the representation theory of the symmetric group is a particular case of the representation theory of finite groups, for which a concrete and detailed theory can be obtained. This has a large area of potential applications, from symmetric function theory to quantum chemistry studies of atoms, molecules and solids.[1][2]
The symmetric group Sn has order n!. Its conjugacy classes are labeled by partitions of n. Therefore according to the representation theory of a finite group, the number of inequivalent irreducible representations, over the complex numbers, is equal to the number of partitions of n. Unlike the general situation for finite groups, there is in fact a natural way to parametrize irreducible representations by the same set that parametrizes conjugacy classes, namely by partitions of n or equivalently Young diagrams of size n.
Each such irreducible representation can in fact be realized over the integers (every permutation acting by a matrix with integer coefficients); it can be explicitly constructed by computing the Young symmetrizers acting on a space generated by the Young tableaux of shape given by the Young diagram. The dimension of the representation that corresponds to the Young diagram is given by the hook length formula.
To each irreducible representation ρ we can associate an irreducible character, χρ. To compute χρ(π) where π is a permutation, one can use the combinatorial Murnaghan–Nakayama rule .[3] Note that χρ is constant on conjugacy classes, that is, χρ(π) = χρ(σ−1πσ) for all permutations σ.
Over other fields the situation can become much more complicated. If the field K has characteristic equal to zero or greater than n then by Maschke's theorem the group algebra KSn is semisimple. In these cases the irreducible representations defined over the integers give the complete set of irreducible representations (after reduction modulo the characteristic if necessary).
However, the irreducible representations of the symmetric group are not known in arbitrary characteristic. In this context it is more usual to use the language of modules rather than representations. The representation obtained from an irreducible representation defined over the integers by reducing modulo the characteristic will not in general be irreducible. The modules so constructed are called Specht modules, and every irreducible does arise inside some such module. There are now fewer irreducibles, and although they can be classified they are very poorly understood. For example, even their dimensions are not known in general.
The determination of the irreducible modules for the symmetric group over an arbitrary field is widely regarded as one of the most important open problems in representation theory.