Reptation

A peculiarity of thermal motion of very long linear macromolecules in entangled polymer melts or concentrated polymer solutions is reptation.[1] Derived from the word reptile, reptation suggests the movement of entangled polymer chains as being analogous to snakes slithering through one another.[2] Pierre-Gilles de Gennes introduced (and named) the concept of reptation into polymer physics in 1971 to explain the dependence of the mobility of a macromolecule on its length. Reptation is used as a mechanism to explain viscous flow in an amorphous polymer.[3][4] Sir Sam Edwards and Masao Doi later refined reptation theory.[5][6] Similar phenomena also occur in proteins.[7]

Two closely related concepts are reptons and entanglement. A repton is a mobile point residing in the cells of a lattice, connected by bonds.[8][9] Entanglement means the topological restriction of molecular motion by other chains.[10]

  1. ^ Pokrovskii, V. N. (2010). The Mesoscopic Theory of Polymer Dynamics. Springer Series in Chemical Physics. Vol. 95. Bibcode:2010mtpd.book.....P. doi:10.1007/978-90-481-2231-8. ISBN 978-90-481-2230-1.
  2. ^ Rubinstein, Michael (March 2008). Dynamics of Entangled Polymers. Pierre-Gilles de Gennes Symposium. New Orleans, LA: American Physical Society. Retrieved 6 April 2015.
  3. ^ De Gennes, P. G. (1983). "Entangled polymers". Physics Today. 36 (6): 33. Bibcode:1983PhT....36f..33D. doi:10.1063/1.2915700. A theory based on the snake-like motion by which chains of monomers move in the melt is enhancing our understanding of rheology, diffusion, polymer-polymer welding, chemical kinetics and biotechnology
  4. ^ De Gennes, P. G. (1971). "Reptation of a Polymer Chain in the Presence of Fixed Obstacles". The Journal of Chemical Physics. 55 (2): 572. Bibcode:1971JChPh..55..572D. doi:10.1063/1.1675789.
  5. ^ Samuel Edwards: Boltzmann Medallist 1995, IUPAP Commission on Statistical Physics, archived from the original on 2013-10-17, retrieved 2013-02-20
  6. ^ Doi, M.; Edwards, S. F. (1978). "Dynamics of concentrated polymer systems. Part 1.?Brownian motion in the equilibrium state". Journal of the Chemical Society, Faraday Transactions 2. 74: 1789–1801. doi:10.1039/f29787401789.
  7. ^ Bu, Z; Cook, J; Callaway, D. J. (2001). "Dynamic regimes and correlated structural dynamics in native and denatured alpha-lactalbumin". Journal of Molecular Biology. 312 (4): 865–73. doi:10.1006/jmbi.2001.5006. PMID 11575938.
  8. ^ Barkema, G. T.; Panja, D.; Van Leeuwen, J. M. J. (2011). "Structural modes of a polymer in the repton model". The Journal of Chemical Physics. 134 (15): 154901. arXiv:1102.1394. Bibcode:2011JChPh.134o4901B. doi:10.1063/1.3580287. PMID 21513412. S2CID 1979411.
  9. ^ Rubinstein, M. (1987). "Discretized model of entangled-polymer dynamics". Physical Review Letters. 59 (17): 1946–1949. Bibcode:1987PhRvL..59.1946R. doi:10.1103/PhysRevLett.59.1946. PMID 10035375.
  10. ^ McLeish, T. C. B. (2002). "Tube theory of entangled polymer dynamics". Advances in Physics. 51 (6): 1379–1527. Bibcode:2002AdPhy..51.1379M. CiteSeerX 10.1.1.629.3682. doi:10.1080/00018730210153216. S2CID 122657744.