Residual neural network

A Residual Block in a deep Residual Network. Here the Residual Connection skips two layers.

A residual neural network (also referred to as a residual network or ResNet)[1] is a deep learning architecture in which the weight layers learn residual functions with reference to the layer inputs. It was developed in 2015 for image recognition and won that year's ImageNet Large Scale Visual Recognition Challenge (ILSVRC).[2][3]

As a point of terminology, "residual connection" refers to the specific architectural motif of , where is an arbitrary neural network module. The motif had been used previously (see §History for details). However, the publication of ResNet made it widely popular for feedforward networks, appearing in neural networks that are otherwise unrelated to ResNet.

The residual connection stabilizes the training and convergence of deep neural networks with hundreds of layers, and is a common motif in deep neural networks, such as Transformer models (e.g., BERT and GPT models such as ChatGPT), the AlphaGo Zero system, the AlphaStar system, and the AlphaFold system.

  1. ^ He, Kaiming; Zhang, Xiangyu; Ren, Shaoqing; Sun, Jian (10 Dec 2015). Deep Residual Learning for Image Recognition. arXiv:1512.03385.
  2. ^ "ILSVRC2015 Results". image-net.org.
  3. ^ Deng, Jia; Dong, Wei; Socher, Richard; Li, Li-Jia; Li, Kai; Fei-Fei, Li (2009). "ImageNet: A large-scale hierarchical image database". CVPR.