This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
A residue numeral system (RNS) is a numeral system representing integers by their values modulo several pairwise coprime integers called the moduli. This representation is allowed by the Chinese remainder theorem, which asserts that, if M is the product of the moduli, there is, in an interval of length M, exactly one integer having any given set of modular values. Using a residue numeral system for arithmetic operations is also called multi-modular arithmetic.
Multi-modular arithmetic is widely used for computation with large integers, typically in linear algebra, because it provides faster computation than with the usual numeral systems, even when the time for converting between numeral systems is taken into account. Other applications of multi-modular arithmetic include polynomial greatest common divisor, Gröbner basis computation and cryptography.