Retrograde signaling

Retrograde signaling in biology is the process where a signal travels backwards from a target source to its original source. For example, the nucleus of a cell is the original source for creating signaling proteins. During retrograde signaling, instead of signals leaving the nucleus, they are sent to the nucleus.[1] In cell biology, this type of signaling typically occurs between the mitochondria or chloroplast and the nucleus. Signaling molecules from the mitochondria or chloroplast act on the nucleus to affect nuclear gene expression. In this regard, the chloroplast or mitochondria act as a sensor for internal external stimuli which activate a signaling pathway.[2]

The postsynaptic dendrite (green) and presynaptic neuron (yellow) found in retrograde neurotransmission.

In neuroscience, retrograde signaling (or retrograde neurotransmission) refers more specifically to the process by which a retrograde messenger, such as anandamide or nitric oxide, is released by a postsynaptic dendrite or cell body, and travels "backwards" across a chemical synapse to bind to the axon terminal of a presynaptic neuron.[3]

  1. ^ Leister, Dario (2012). "Retrograde signaling in plants: from simple to complex scenarios". Frontiers in Plant Science. 3: 135. doi:10.3389/fpls.2012.00135. ISSN 1664-462X. PMC 3377957. PMID 22723802.
  2. ^ Cite error: The named reference Nott_2006 was invoked but never defined (see the help page).
  3. ^ Regehr WG, Carey MR, Best AR (July 2009). "Activity-dependent regulation of synapses by retrograde messengers". Neuron. 63 (2): 154–70. doi:10.1016/j.neuron.2009.06.021. PMC 3251517. PMID 19640475.