Rhombitriheptagonal tiling | |
---|---|
Poincaré disk model of the hyperbolic plane | |
Type | Hyperbolic uniform tiling |
Vertex configuration | 3.4.7.4 |
Schläfli symbol | rr{7,3} or |
Wythoff symbol | 3 | 7 2 |
Coxeter diagram | or |
Symmetry group | [7,3], (*732) |
Dual | Deltoidal triheptagonal tiling |
Properties | Vertex-transitive |
In geometry, the rhombitriheptagonal tiling is a semiregular tiling of the hyperbolic plane. At each vertex of the tiling there is one triangle and one heptagon, alternating between two squares. The tiling has Schläfli symbol rr{7, 3}. It can be seen as constructed as a rectified triheptagonal tiling, r{7,3}, as well as an expanded heptagonal tiling or expanded order-7 triangular tiling.