In mathematics, a Riccati equation in the narrowest sense is any first-order ordinary differential equation that is quadratic in the unknown function. In other words, it is an equation of the form
where and . If the equation reduces to a Bernoulli equation, while if the equation becomes a first order linear ordinary differential equation.
The equation is named after Jacopo Riccati (1676–1754).[1]
More generally, the term Riccati equation is used to refer to matrix equations with an analogous quadratic term, which occur in both continuous-time and discrete-time linear-quadratic-Gaussian control. The steady-state (non-dynamic) version of these is referred to as the algebraic Riccati equation.