Sequence acceleration method in numerical analysis
In numerical analysis, Richardson extrapolation is a sequence acceleration method used to improve the rate of convergence of a sequence of estimates of some value . In essence, given the value of for several values of , we can estimate by extrapolating the estimates to . It is named after Lewis Fry Richardson, who introduced the technique in the early 20th century,[1][2] though the idea was already known to Christiaan Huygens in his calculation of .[3] In the words of Birkhoff and Rota, "its usefulness for practical computations can hardly be overestimated."[4]
Practical applications of Richardson extrapolation include Romberg integration, which applies Richardson extrapolation to the trapezoid rule, and the Bulirsch–Stoer algorithm for solving ordinary differential equations.
- ^ Richardson, L. F. (1911). "The approximate arithmetical solution by finite differences of physical problems including differential equations, with an application to the stresses in a masonry dam". Philosophical Transactions of the Royal Society A. 210 (459–470): 307–357. doi:10.1098/rsta.1911.0009.
- ^ Richardson, L. F.; Gaunt, J. A. (1927). "The deferred approach to the limit". Philosophical Transactions of the Royal Society A. 226 (636–646): 299–349. doi:10.1098/rsta.1927.0008.
- ^ Brezinski, Claude (2009-11-01), "Some pioneers of extrapolation methods", The Birth of Numerical Analysis, WORLD SCIENTIFIC, pp. 1–22, doi:10.1142/9789812836267_0001, ISBN 978-981-283-625-0
- ^ Page 126 of Birkhoff, Garrett; Gian-Carlo Rota (1978). Ordinary differential equations (3rd ed.). John Wiley and sons. ISBN 0-471-07411-X. OCLC 4379402.