This article may be confusing or unclear to readers. In particular, the lead refers correctly to transformations of Euclidean spaces, while the sections describe only the case of Euclidean vector spaces or of spaces of coordinate vectors. The "formal definition" section does not specify which kind of objects are represented by the variables, call them vaguely as "vectors", suggests implicitly that a basis and a dot product are defined for every kind of vectors. (August 2021) |
In mathematics, a rigid transformation (also called Euclidean transformation or Euclidean isometry) is a geometric transformation of a Euclidean space that preserves the Euclidean distance between every pair of points.[1][self-published source][2][3]
The rigid transformations include rotations, translations, reflections, or any sequence of these. Reflections are sometimes excluded from the definition of a rigid transformation by requiring that the transformation also preserve the handedness of objects in the Euclidean space. (A reflection would not preserve handedness; for instance, it would transform a left hand into a right hand.) To avoid ambiguity, a transformation that preserves handedness is known as a rigid motion, a Euclidean motion, or a proper rigid transformation.
In dimension two, a rigid motion is either a translation or a rotation. In dimension three, every rigid motion can be decomposed as the composition of a rotation and a translation, and is thus sometimes called a rototranslation. In dimension three, all rigid motions are also screw motions (this is Chasles' theorem)
In dimension at most three, any improper rigid transformation can be decomposed into an improper rotation followed by a translation, or into a sequence of reflections.
Any object will keep the same shape and size after a proper rigid transformation.
All rigid transformations are examples of affine transformations. The set of all (proper and improper) rigid transformations is a mathematical group called the Euclidean group, denoted E(n) for n-dimensional Euclidean spaces. The set of rigid motions is called the special Euclidean group, and denoted SE(n).
In kinematics, rigid motions in a 3-dimensional Euclidean space are used to represent displacements of rigid bodies. According to Chasles' theorem, every rigid transformation can be expressed as a screw motion.