The rings of Uranus are intermediate in complexity between the more extensive set around Saturn and the simpler systems around Jupiter and Neptune. The rings of Uranus were discovered on March 10, 1977, by James L. Elliot, Edward W. Dunham, and Jessica Mink. William Herschel had also reported observing rings in 1789; modern astronomers are divided on whether he could have seen them, as they are very dark and faint.[1]
By 1977, nine distinct rings were identified. Two additional rings were discovered in 1986 in images taken by the Voyager 2 spacecraft, and two outer rings were found in 2003–2005 in Hubble Space Telescope photos. In the order of increasing distance from the planet the 13 known rings are designated 1986U2R/ζ, 6, 5, 4, α, β, η, γ, δ, λ, ε, ν and μ. Their radii range from about 38,000 km for the 1986U2R/ζ ring to about 98,000 km for the μ ring. Additional faint dust bands and incomplete arcs may exist between the main rings. The rings are extremely dark—the Bond albedo of the rings' particles does not exceed 2%. They are probably composed of water ice with the addition of some dark radiation-processed organics.
The majority of Uranus' rings are opaque and only a few kilometres wide. The ring system contains little dust overall; it consists mostly of large bodies 20 cm to 20 m in diameter. Some rings are optically thin: the broad and faint 1986U2R/ζ, μ and ν rings are made of small dust particles, while the narrow and faint λ ring also contains larger bodies. The relative lack of dust in the ring system may be due to aerodynamic drag from the extended Uranian exosphere.
The rings of Uranus are thought to be relatively young, and not more than 600 million years old. The Uranian ring system probably originated from the collisional fragmentation of several moons that once existed around the planet. After colliding, the moons probably broke up into many particles, which survived as narrow and optically dense rings only in strictly confined zones of maximum stability.
The mechanism that confines the narrow rings is not well understood. Initially it was assumed that every narrow ring had a pair of nearby shepherd moons corralling it into shape. In 1986 Voyager 2 discovered only one such shepherd pair (Cordelia and Ophelia) around the brightest ring (ε), though the faint ν would later be discovered shepherded between Portia and Rosalind.[2]