Rock magnetism is the study of the magnetic properties of rocks, sediments and soils. The field arose out of the need in paleomagnetism to understand how rocks record the Earth's magnetic field. This remanence is carried by minerals, particularly certain strongly magnetic minerals like magnetite (the main source of magnetism in lodestone). An understanding of remanence helps paleomagnetists to develop methods for measuring the ancient magnetic field and correct for effects like sediment compaction and metamorphism. Rock magnetic methods are used to get a more detailed picture of the source of the distinctive striped pattern in marine magnetic anomalies that provides important information on plate tectonics. They are also used to interpret terrestrial magnetic anomalies in magnetic surveys as well as the strong crustal magnetism on Mars.
Strongly magnetic minerals have properties that depend on the size, shape, defect structure and concentration of the minerals in a rock. Rock magnetism provides non-destructive methods for analyzing these minerals such as magnetic hysteresis measurements, temperature-dependent remanence measurements, Mössbauer spectroscopy, ferromagnetic resonance and so on. With such methods, rock magnetists can measure the effects of past climate change and human impacts on the mineralogy (see environmental magnetism). In sediments, a lot of the magnetic remanence is carried by minerals that were created by magnetotactic bacteria, so rock magnetists have made significant contributions to biomagnetism.