Developer(s) | Baker laboratory, University of Washington; Rosetta Commons |
---|---|
Initial release | October 6, 2005 |
Stable release | Rosetta: 4.20 / May 1, 2020 Rosetta Mini: 3.78 / October 3, 2017 Rosetta for Android: 4.20 / May 1, 2020 |
Development status | Active |
Operating system | Windows, macOS, Linux, Android |
Platform | BOINC |
License | Proprietary freeware for academic and non-profit use[1] |
Average performance | 68,735 GigaFLOPS[2] |
Active users | 11,730 |
Total users | 1,381,253[3] |
Active hosts | 23,122 |
Total hosts | 4,537,689 |
Website | boinc |
Rosetta@home is a volunteer computing project researching protein structure prediction on the Berkeley Open Infrastructure for Network Computing (BOINC) platform, run by the Baker lab. Rosetta@home aims to predict protein–protein docking and design new proteins with the help of about fifty-five thousand active volunteered computers processing at over 487,946 GigaFLOPS on average as of September 19, 2020.[4] Foldit, a Rosetta@home videogame, aims to reach these goals with a crowdsourcing approach. Though much of the project is oriented toward basic research to improve the accuracy and robustness of proteomics methods, Rosetta@home also does applied research on malaria, Alzheimer's disease, and other pathologies.[5]
Like all BOINC projects, Rosetta@home uses idle computer processing resources from volunteers' computers to perform calculations on individual workunits. Completed results are sent to a central project server where they are validated and assimilated into project databases. The project is cross-platform, and runs on a wide variety of hardware configurations. Users can view the progress of their individual protein structure prediction on the Rosetta@home screensaver.
In addition to disease-related research, the Rosetta@home network serves as a testing framework for new methods in structural bioinformatics. Such methods are then used in other Rosetta-based applications, like RosettaDock or the Human Proteome Folding Project and the Microbiome Immunity Project, after being sufficiently developed and proven stable on Rosetta@home's large and diverse set of volunteer computers. Two especially important tests for the new methods developed in Rosetta@home are the Critical Assessment of Techniques for Protein Structure Prediction (CASP) and Critical Assessment of Prediction of Interactions (CAPRI) experiments, biennial experiments which evaluate the state of the art in protein structure prediction and protein–protein docking prediction, respectively. Rosetta consistently ranks among the foremost docking predictors, and is one of the best tertiary structure predictors available.[6]
With an influx of new users looking to participate in the fight against the COVID-19 pandemic, caused by SARS-CoV-2, Rosetta@home increased its computing power up to 1.7 PetaFlops as of March 28, 2020.[7][8] On September 9, 2020, Rosetta@home researchers published a paper describing 10 potent antiviral candidates against SARS-CoV-2. Rosetta@home contributed to this research and these antiviral candidates are heading towards Phase 1 clinical trials, which may begin in early 2022.[9][10][11][12] According to the Rosetta@home team, Rosetta volunteers contributed to the development of a nanoparticle vaccine.[9] This vaccine has been licensed and is known as the IVX-411 by Icosavax, which began a Phase I/II clinical trial in June 2021,[13] and GBP510 which is being developed by SK Bioscience and is already approved for a Phase III clinical trial in South Korea.[14][15]
NL-201, a cancer drug candidate that was first created at the Institute of Protein Design (IPD) and published in a January 2019 paper,[16] began a Phase 1 Human clinical trial in May 2021 with the support of Neoleukin Therapeutics, itself a spin-off from the IPD.[17] Rosetta@home played a role in the development of NL-201 and contributed with "forward folding" experiments that helped validate protein designs.[18]
{{cite web}}
: CS1 maint: archived copy as title (link)
:3
was invoked but never defined (see the help page).