Ross's conjecture

In queueing theory, a discipline within the mathematical theory of probability, Ross's conjecture gives a lower bound for the average waiting-time experienced by a customer when arrivals to the queue do not follow the simplest model for random arrivals. It was proposed by Sheldon M. Ross in 1978 and proved in 1981 by Tomasz Rolski.[1] Equality can be obtained in the bound; and the bound does not hold for finite buffer queues.[2]

  1. ^ Cite error: The named reference rolski was invoked but never defined (see the help page).
  2. ^ Heyman, D. P. (1982), "On Ross's conjectures about queues with non-stationary Poisson arrivals", Journal of Applied Probability, 19 (1): 245–249, doi:10.2307/3213936, JSTOR 3213936, MR 0644439, S2CID 124412913.