Part of a series on |
Machine learning and data mining |
---|
Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply.[1][2][3] The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that collectively represent the knowledge captured by the system.
Rule-based machine learning approaches include learning classifier systems,[4] association rule learning,[5] artificial immune systems,[6] and any other method that relies on a set of rules, each covering contextual knowledge.
While rule-based machine learning is conceptually a type of rule-based system, it is distinct from traditional rule-based systems, which are often hand-crafted, and other rule-based decision makers. This is because rule-based machine learning applies some form of learning algorithm to automatically identify useful rules, rather than a human needing to apply prior domain knowledge to manually construct rules and curate a rule set.
{{cite journal}}
: CS1 maint: multiple names: authors list (link)