In physics, the S-matrix or scattering matrix is a matrix which relates the initial state and the final state of a physical system undergoing a scattering process. It is used in quantum mechanics, scattering theory and quantum field theory (QFT).
More formally, in the context of QFT, the S-matrix is defined as the unitary matrix connecting sets of asymptotically free particle states (the in-states and the out-states) in the Hilbert space of physical states. A multi-particle state is said to be free (or non-interacting) if it transforms under Lorentz transformations as a tensor product, or direct product in physics parlance, of one-particle states as prescribed by equation (1) below. Asymptotically free then means that the state has this appearance in either the distant past or the distant future.
While the S-matrix may be defined for any background (spacetime) that is asymptotically solvable and has no event horizons, it has a simple form in the case of the Minkowski space. In this special case, the Hilbert space is a space of irreducible unitary representations of the inhomogeneous Lorentz group (the Poincaré group); the S-matrix is the evolution operator between (the distant past), and (the distant future). It is defined only in the limit of zero energy density (or infinite particle separation distance).
It can be shown that if a quantum field theory in Minkowski space has a mass gap, the state in the asymptotic past and in the asymptotic future are both described by Fock spaces.