This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these messages)
|
Developer(s) | University of California, Berkeley |
---|---|
Initial release | May 17, 1999 |
Stable release | SETI@home v8:8.00 / December 30, 2015 SETI@home v8 for NVIDIA and AMD/ATi GPU Card:8.12/ April 23, 2015 |
Development status | In hibernation |
Project goal(s) | Discovery of radio evidence of extraterrestrial life |
Funding | Public funding and private donations |
Operating system | Microsoft Windows, Linux, Android, macOS, Solaris,[1] IBM AIX, FreeBSD, DragonflyBSD, OpenBSD, NetBSD, HP-UX, IRIX, Tru64 Unix, OS/2 Warp, eComStation[2] |
Platform | Cross-platform |
Type | Volunteer computing |
License | GPL[3] |
Active users | 91,454 (March 2020)[4] |
Total users | 1,803,163 (March 2020)[4] |
Active hosts | 144,779 (March 2020)[4] |
Total hosts | 165,178 (March 2020)[4] |
Website | setiathome |
SETI@home ("SETI at home") is a project of the Berkeley SETI Research Center to analyze radio signals with the aim of searching for signs of extraterrestrial intelligence. Until March 2020, it was run as an Internet-based public volunteer computing project that employed the BOINC software platform. It is hosted by the Space Sciences Laboratory at the University of California, Berkeley, and is one of many activities undertaken as part of the worldwide SETI effort.
SETI@home software was released to the public on May 17, 1999,[5][6][7][8] making it the third large-scale use of volunteer computing over the Internet for research purposes, after Great Internet Mersenne Prime Search (GIMPS) was launched in 1996 and distributed.net in 1997. Along with MilkyWay@home and Einstein@home, it is the third major computing project of this type that has the investigation of phenomena in interstellar space as its primary purpose.
In March 2020, the project stopped sending out new work to SETI@home users, bringing the crowdsourced computing aspect of the project to a stop.[9] At the time, the team intended to shift focus onto the analysis and interpretation of the 20 years' worth of accumulated data. However, the team left open the possibility of eventually resuming volunteer computing using data from other radio telescopes, such as MeerKAT and FAST.[10]
As of November 2021, the science team has analysed the data and removed noisy signals (Radio Frequency Interference) using the Nebula tool they developed and will choose the top-scoring 100 or so multiplets to be observed using the Five-hundred-meter Aperture Spherical Telescope, to which they have been granted 24 hours of observation time.[11]