SU-8 photoresist

SU-8 molecule

SU-8 is a commonly used epoxy-based negative photoresist. Negative refers to a photoresist whereby the parts exposed to UV become cross-linked, while the remainder of the film remains soluble and can be washed away during development.

As shown in the structural diagram, SU-8 derives its name from the presence of 8 epoxy groups. This is a statistical average per moiety. It is these epoxies that cross-link to give the final structure.

It can be made into a viscous polymer that can be spun or spread over a thickness ranging from below 1 micrometer up to above 300 micrometers, or Thick Film Dry Sheets (TFDS) for lamination up to above 1 millimetre thick. Up to 500 μm, the resist can be processed with standard contact lithography.[1] Above 500 μm, absorption leads to increasing sidewall undercuts and poor curing at the substrate interface. It can be used to pattern high aspect ratio structures. An aspect ratio of (> 20) has been achieved with the solution formulation[2] and (> 40) has been demonstrated from the dry resist.[3] Its maximum absorption is for ultraviolet light with a wavelength of the i-line: 365 nm (it is not practical to expose SU-8 with g-line ultraviolet light). When exposed, SU-8's long molecular chains cross-link, causing the polymerisation of the material. SU-8 series photoresists use gamma-butyrolactone or cyclopentanone as the primary solvent.

SU-8 was originally developed as a photoresist for the microelectronics industry, to provide a high-resolution mask for fabrication of semiconductor devices.

It is now mainly used in the fabrication of microfluidics (mainly via soft lithography, but also with other imprinting techniques such as nanoimprint lithography[4]) and microelectromechanical systems parts. It is also one of the most biocompatible materials known[5] and is often used in bio-MEMS for life science applications.[6]

  1. ^ "SU-8 Resists: FAQs". MicroChem. Archived from the original on 17 May 2009. Retrieved 21 Jul 2011.
  2. ^ Liu J, Cai B, Zhu J, et al. (2004). "Process research of high aspect ratio microstructure using SU-8 resist". Microsyst. Technol. 10 (4): 265–8. Bibcode:2004MiTec..10..265L. doi:10.1007/s00542-002-0242-2. S2CID 111062837.
  3. ^ Johnsona DW, Goettertb J, Singhb V, et al. (2012). "SUEX Dry Film Resist – A new Material for High Aspect Ratio Lithography" (PDF). Louisiana State University Proceedings.
  4. ^ Greener J, Li W, Ren J, et al. (February 2010). "Rapid, cost-efficient fabrication of microfluidic reactors in thermoplastic polymers by combining photolithography and hot embossing". Lab on a Chip. 10 (4): 522–4. doi:10.1039/B918834G. PMID 20126695.
  5. ^ Nemani KV, Moodie KL, Brennick JB, et al. (2013). "In vitro and in vivo evaluation of SU-8 biocompatibility". Materials Science and Engineering: C. 33 (7): 4453–9. doi:10.1016/j.msec.2013.07.001. PMC 3843949. PMID 23910365.
  6. ^ Arscott S (2014). "SU-8 as a material for lab-on-a-chip-based mass spectrometry". Lab on a Chip. 14 (19): 3668–89. doi:10.1039/C4LC00617H. PMID 25029537.