A satellite navigation device or satnav device, also known as a satellite navigation receiver or satnav receiver or simply a GPS device, is a user equipment that uses satellites of the Global Positioning System (GPS) or similar global navigation satellite systems (GNSS). A satnav device can determine the user's geographic coordinates and may display the geographical position on a map and offer routing directions (as in turn-by-turn navigation).
As of 2023[update], four GNSS systems are operational: the original United States' GPS, the European Union's Galileo, Russia's GLONASS,[1][2] and China's BeiDou Navigation Satellite System. The Indian Regional Navigation Satellite System (IRNSS) will follow and Japan's Quasi-Zenith Satellite System (QZSS) scheduled for 2023 will augment the accuracy of a number of GNSS.
A satellite navigation device can retrieve location and time information from one or more GNSS systems in all weather conditions, anywhere on or near the Earth's surface. Satnav reception requires an unobstructed line of sight to four or more GNSS satellites,[3] and is subject to poor satellite signal conditions. In exceptionally poor signal conditions, for example in urban areas, satellite signals may exhibit multipath propagation where signals bounce off structures, or are weakened by meteorological conditions. Obstructed lines of sight may arise from a tree canopy or inside a structure, such as in a building, garage or tunnel. Today, most standalone Satnav receivers are used in automobiles. The Satnav capability of smartphones may use assisted GNSS (A-GNSS) technology, which can use the base station or cell towers to provide a faster Time to First Fix (TTFF), especially when satellite signals are poor or unavailable. However, the mobile network part of the A-GNSS technology would not be available when the smartphone is outside the range of the mobile reception network, while the satnav aspect would otherwise continue to be available.