In physics, the scallop theorem states that a swimmer that performs a reciprocal motion cannot achieve net displacement in a low-Reynolds number Newtonian fluid environment, i.e. a fluid that is highly viscous. Such a swimmer deforms its body into a particular shape through a sequence of motions and then reverts to the original shape by going through the sequence in reverse. At low Reynolds number, time or inertia does not come into play, and the swimming motion is purely determined by the sequence of shapes that the swimmer assumes.
Edward Mills Purcell stated this theorem in his 1977 paper Life at Low Reynolds Number explaining physical principles of aquatic locomotion.[1] The theorem is named for the motion of a scallop which opens and closes a simple hinge during one period. Such motion is not sufficient to create migration at low Reynolds numbers. The scallop is an example of a body with one degree of freedom to use for motion. Bodies with a single degree of freedom deform in a reciprocal manner and subsequently, bodies with one degree of freedom do not achieve locomotion in a highly viscous environment.