Schneider flow

Schneider flow describes the axisymmetric outer flow induced by a laminar or turbulent jet having a large jet Reynolds number or by a laminar plume with a large Grashof number, in the case where the fluid domain is bounded by a wall. When the jet Reynolds number or the plume Grashof number is large, the full flow field constitutes two regions of different extent: a thin boundary-layer flow that may identified as the jet or as the plume and a slowly moving fluid in the large outer region encompassing the jet or the plume. The Schneider flow describing the latter motion is an exact solution of the Navier-Stokes equations, discovered by Wilhelm Schneider in 1981.[1] The solution was discovered also by A. A. Golubinskii and V. V. Sychev in 1979,[2][3] however, was never applied to flows entrained by jets. The solution is an extension of Taylor's potential flow solution[4] to arbitrary Reynolds number.

  1. ^ Schneider, W. (1981). Flow induced by jets and plumes. Journal of Fluid Mechanics, 108, 55–65.
  2. ^ A. A. Golubinskii and V. V. Sychev, A similar solution of the Navier–Stokes equations, Uch. Zap. TsAGI 7 (1976) 11–17.
  3. ^ Rajamanickam, P., & Weiss, A. D. (2020). A note on viscous flow induced by half-line sources bounded by conical surfaces. The Quarterly Journal of Mechanics and Applied Mathematics, 73(1), 24-35.
  4. ^ Taylor, G. (1958). Flow induced by jets. Journal of the Aerospace Sciences, 25(7), 464–465.