In differential geometry, the Schwarz minimal surfaces are periodic minimal surfaces originally described by Hermann Schwarz.
In the 1880s Schwarz and his student E. R. Neovius described periodic minimal surfaces.[1][2] They were later named by Alan Schoen in his seminal report that described the gyroid and other triply periodic minimal surfaces.[3]
The surfaces were generated using symmetry arguments: given a solution to Plateau's problem for a polygon, reflections of the surface across the boundary lines also produce valid minimal surfaces that can be continuously joined to the original solution. If a minimal surface meets a plane at right angles, then the mirror image in the plane can also be joined to the surface. Hence given a suitable initial polygon inscribed in a unit cell periodic surfaces can be constructed.[4]
The Schwarz surfaces have topological genus 3, the minimal genus of triply periodic minimal surfaces.[5]
They have been considered as models for periodic nanostructures in block copolymers, electrostatic equipotential surfaces in crystals,[6] and hypothetical negatively curved graphite phases.[7]