Seismic interferometry

Interferometry examines the general interference phenomena between pairs of signals in order to gain useful information about the subsurface.[1] Seismic interferometry (SI) utilizes the crosscorrelation of signal pairs to reconstruct the impulse response of a given media. Papers by Keiiti Aki (1957),[2] Géza Kunetz, and Jon Claerbout (1968)[3] helped develop the technique for seismic applications and provided the framework upon which modern theory is based.

A signal at a location A can be crosscorrelated with a signal at a location B to reproduce a virtual source-receiver pair using seismic interferometry. Crosscorrelation is often considered the key mathematical operation in this approach, but it is also possible to use convolution to come up with a similar result. The crosscorrelation of passive noise measured at a free surface reproduces the subsurface response as if it was induced by an impulsive point source, which is, by definition, equal to Green's function.[4] As such, it is possible to obtain information about the subsurface with no need for an active seismic source.[5] This method, however, is not limited to passive sources, and can be extended for use with active sources and computer–generated waveforms.[1]

Image showing usefulness of seismic waves to investigate the subsurface

As of 2006 the field of seismic interferometry was beginning to change the way geophysicists view seismic noise. Seismic interferometry uses this previously–ignored background wavefield to provide new information that can be used to construct models of the subsurface as an inverse problem. Potential applications range from the continent scale to much smaller-scale natural hazards, industrial, and environmental applications.[1]

  1. ^ a b c Curtis et al. 2006
  2. ^ Aki, Keiiti (1957). "Space and time spectra of stationary stochastic waves, with special reference to microtremors". Bulletin of the Earthquake Research Institute. 35: 415–457. hdl:2261/11892.
  3. ^ Claerbout, Jon F. (April 1968). "Synthesis of a Layered Medium from ITS Acoustic Transmission Response". Geophysics. 33 (2): 264–269. Bibcode:1968Geop...33..264C. doi:10.1190/1.1439927.
  4. ^ Snieder, Roel; Wapenaar, Kees (2010-09-01). "Imaging with ambient noise". Physics Today. 63 (9): 44–49. Bibcode:2010PhT....63i..44S. doi:10.1063/1.3490500. ISSN 0031-9228.
  5. ^ Cite error: The named reference drag06 was invoked but never defined (see the help page).