A converse of the conjecture holds: if the field F is perfect and if the cohomology set H1(F, G) is zero for every semisimple simply connected algebraic group G then the p-cohomological dimension of F is at most 2 for every primep.[3]
The conjecture holds in the case where F is a local field (such as p-adic field) or a global field with no real embeddings (such as Q(√−1)). This is a special case of the Kneser–Harder–Chernousov Hasse principle for algebraic groups over global fields. (Note that such fields do indeed have cohomological dimension at most 2.[2])
The conjecture also holds when F is finitely generated over the complex numbers and has transcendence degree at most 2.[4]
The conjecture is also known to hold for certain groups G. For special linear groups, it is a consequence of the Merkurjev–Suslin theorem.[5] Building on this result, the conjecture holds if G is a classical group.[6] The conjecture also holds if G is one of certain kinds of exceptional group.[7]
.[8]
^Serre, J-P. (1962). "Cohomologie galoisienne des groupes algébriques linéaires". Colloque sur la théorie des groupes algébriques: 53–68.
^de Jong, A.J.; He, Xuhua; Starr, Jason Michael (2008). "Families of rationally simply connected varieties over surfaces and torsors for semisimple groups". arXiv:0809.5224 [math.AG].