Shape resonance

In quantum mechanics, a shape resonance is a metastable state in which an electron is trapped due to the shape of a potential barrier.[1] Altunata[2] describes a state as being a shape resonance if, "the internal state of the system remains unchanged upon disintegration of the quasi-bound level." A more general discussion of resonances and their taxonomies in molecular system can be found in the review article by Schulz;[3][4] for the discovery of the Fano resonance line-shape[5] and for the Majorana pioneering work in this field[6] by Antonio Bianconi; and for a mathematical review by Combes et al.[7]

  1. ^ Atomic, Molecular, and Optical Physics Panel on Atomic, Molecular, and Optical Physics Physics Survey Committee, Board on Physics and Astronomy, National Research Council, National Academic Press ISBN 978-0-309-07371-4
  2. ^ cite A Generalized Quantum Defect Methods in Chemistry Altunata, PhD Thesis, MIT 2006 full text Archived 2011-06-05 at the Wayback Machine
  3. ^ Schulz, George J. (1973-07-01). "Resonances in Electron Impact on Atoms" (PDF). Reviews of Modern Physics. 45 (3). American Physical Society (APS): 378–422. Bibcode:1973RvMP...45..378S. doi:10.1103/revmodphys.45.378. ISSN 0034-6861. Archived from the original (PDF) on 2008-09-24.
  4. ^ Schulz, George J. (1973-07-01). "Resonances in Electron Impact on Diatomic Molecules" (PDF). Reviews of Modern Physics. 45 (3). American Physical Society (APS): 423–486. Bibcode:1973RvMP...45..423S. doi:10.1103/revmodphys.45.423. ISSN 0034-6861. Archived from the original (PDF) on 2008-09-24.
  5. ^ Bianconi, Antonio (2003). Ugo Fano and shape resonances. X-ray and Inner Shell Processes (19th Int. Conference Roma June 24–28, 2002). Unsolved Problems of Noise and Fluctuations. Vol. 652. AIP. p. 13. arXiv:cond-mat/0211452. doi:10.1063/1.1536357. ISSN 0094-243X.
  6. ^ Vittorini-Orgeas, Alessandra; Bianconi, Antonio (2009-01-07). "From Majorana Theory of Atomic Autoionization to Feshbach Resonances in High Temperature Superconductors". Journal of Superconductivity and Novel Magnetism. 22 (3): 215–221. arXiv:0812.1551. doi:10.1007/s10948-008-0433-x. ISSN 1557-1939. S2CID 118439516.
  7. ^ Combes, J. M.; Duclos, P.; Klein, M.; Seiler, R. (1987). "The shape resonance". Communications in Mathematical Physics. 110 (2). Springer Science and Business Media LLC: 215–236. Bibcode:1987CMaPh.110..215C. doi:10.1007/bf01207364. ISSN 0010-3616. S2CID 119536657.