Shinichi Mochizuki

Shinichi Mochizuki
Born (1969-03-29) March 29, 1969 (age 55)[1]
NationalityJapanese
Alma materPrinceton University
Known forAnabelian geometry
Inter-universal Teichmüller theory
AwardsJSPS Prize, Japan Academy Medal[1]
Scientific career
FieldsMathematics
InstitutionsKyoto University
Doctoral advisorGerd Faltings

Shinichi Mochizuki (望月 新一, Mochizuki Shin'ichi, born March 29, 1969) is a Japanese mathematician working in number theory and arithmetic geometry. He is one of the main contributors to anabelian geometry. His contributions include his solution of the Grothendieck conjecture in anabelian geometry about hyperbolic curves over number fields. Mochizuki has also worked in Hodge–Arakelov theory and p-adic Teichmüller theory. Mochizuki developed inter-universal Teichmüller theory,[2][3][4][5] which has attracted attention from non-mathematicians due to claims it provides a resolution of the abc conjecture.[6]

  1. ^ a b c Mochizuki, Shinichi. "Curriculum Vitae" (PDF). Retrieved 14 September 2012.
  2. ^ Mochizuki, Shinichi (2021). "Inter-universal Teichmüller Theory I: Construction of Hodge Theaters" (PDF). Publications of the Research Institute for Mathematical Sciences. 57 (1–2): 3–207. doi:10.4171/PRIMS/57-1-1. S2CID 233829305.
  3. ^ Mochizuki, Shinichi (2021). "Inter-universal Teichmüller Theory II: Hodge–Arakelov-Theoretic Evaluation" (PDF). Publications of the Research Institute for Mathematical Sciences. 57 (1–2): 209–401. doi:10.4171/PRIMS/57-1-2. S2CID 233794971.
  4. ^ Mochizuki, Shinichi (2021). "Inter-universal Teichmüller Theory III: Canonical Splittings of the Log-Theta-Lattice" (PDF). Publications of the Research Institute for Mathematical Sciences. 57 (1–2): 403–626. doi:10.4171/PRIMS/57-1-3. S2CID 233777314.
  5. ^ Mochizuki, Shinichi (2021). "Inter-universal Teichmüller Theory IV: Log-Volume Computations and Set-Theoretic Foundations" (PDF). Publications of the Research Institute for Mathematical Sciences. 57 (1–2): 627–723. doi:10.4171/PRIMS/57-1-4. S2CID 3135393.
  6. ^ Crowell 2017.