Sieve theory

Sieve theory is a set of general techniques in number theory, designed to count, or more realistically to estimate the size of, sifted sets of integers. The prototypical example of a sifted set is the set of prime numbers up to some prescribed limit X. Correspondingly, the prototypical example of a sieve is the sieve of Eratosthenes, or the more general Legendre sieve. The direct attack on prime numbers using these methods soon reaches apparently insuperable obstacles, in the way of the accumulation of error terms.[citation needed] In one of the major strands of number theory in the twentieth century, ways were found of avoiding some of the difficulties of a frontal attack with a naive idea of what sieving should be.[citation needed]

One successful approach is to approximate a specific sifted set of numbers (e.g. the set of prime numbers) by another, simpler set (e.g. the set of almost prime numbers), which is typically somewhat larger than the original set, and easier to analyze. More sophisticated sieves also do not work directly with sets per se, but instead count them according to carefully chosen weight functions on these sets (options for giving some elements of these sets more "weight" than others). Furthermore, in some modern applications, sieves are used not to estimate the size of a sifted set, but to produce a function that is large on the set and mostly small outside it, while being easier to analyze than the characteristic function of the set.

The term sieve was first used by the Norwegian mathematician Viggo Brun in 1915.[1] However Brun's work was inspired by the works of the French mathematician Jean Merlin who died in the World War I and only two of his manuscripts survived.[2]

  1. ^ Brun, Viggo (1915). "Über das Goldbachsche Gesetz und die Anzahl der Primzahlpaare". Archiv for Math. Naturvidenskab. 34.
  2. ^ Cojocaru, Alina Carmen; Murty, M. Ram (2005). An Introduction to Sieve Methods and Their Applications. Cambridge University Press. doi:10.1017/CBO9780511615993. ISBN 978-0-521-84816-9.