Silicon photonics

Silicon photonics is the study and application of photonic systems which use silicon as an optical medium.[1][2][3][4][5] The silicon is usually patterned with sub-micrometre precision, into microphotonic components.[4] These operate in the infrared, most commonly at the 1.55 micrometre wavelength used by most fiber optic telecommunication systems.[6] The silicon typically lies on top of a layer of silica in what (by analogy with a similar construction in microelectronics) is known as silicon on insulator (SOI).[4][5]

Silicon photonics 300 mm wafer

Silicon photonic devices can be made using existing semiconductor fabrication techniques, and because silicon is already used as the substrate for most integrated circuits, it is possible to create hybrid devices in which the optical and electronic components are integrated onto a single microchip.[6] Consequently, silicon photonics is being actively researched by many electronics manufacturers including IBM and Intel, as well as by academic research groups, as a means for keeping on track with Moore's Law, by using optical interconnects to provide faster data transfer both between and within microchips.[7][8][9]

The propagation of light through silicon devices is governed by a range of nonlinear optical phenomena including the Kerr effect, the Raman effect, two-photon absorption and interactions between photons and free charge carriers.[10] The presence of nonlinearity is of fundamental importance, as it enables light to interact with light,[11] thus permitting applications such as wavelength conversion and all-optical signal routing, in addition to the passive transmission of light.

Silicon waveguides are also of great academic interest, due to their unique guiding properties, they can be used for communications, interconnects, biosensors,[12][13] and they offer the possibility to support exotic nonlinear optical phenomena such as soliton propagation.[14][15][16]

  1. ^ Soref, Richard A.; Lorenzo, Joseph P. (1986). "All-silicon active and passive guided-wave components for lambda= 1.3 and 1.6 microns". IEEE Journal of Quantum Electronics. 22 (6): 873–879. Bibcode:1986IJQE...22..873S. doi:10.1109/JQE.1986.1073057. Archived from the original on 2 December 2020. Retrieved 2 July 2019.
  2. ^ Jalali, Bahram; Fathpour, Sasan (2006). "Silicon photonics". Journal of Lightwave Technology. 24 (12): 4600–4615. Bibcode:2006JLwT...24.4600J. doi:10.1109/JLT.2006.885782.
  3. ^ Almeida, V. R.; Barrios, C. A.; Panepucci, R. R.; Lipson, M (2004). "All-optical control of light on a silicon chip". Nature. 431 (7012): 1081–1084. Bibcode:2004Natur.431.1081A. doi:10.1038/nature02921. PMID 15510144. S2CID 4404067.
  4. ^ a b c Silicon photonics. Springer. 2004. ISBN 3-540-21022-9.
  5. ^ a b Silicon photonics: an introduction. John Wiley and Sons. 2004. ISBN 0-470-87034-6.
  6. ^ a b Lipson, Michal (2005). "Guiding, Modulating, and Emitting Light on Silicon – Challenges and Opportunities". Journal of Lightwave Technology. 23 (12): 4222–4238. Bibcode:2005JLwT...23.4222L. doi:10.1109/JLT.2005.858225. S2CID 42767475.
  7. ^ "Silicon Integrated Nanophotonics". IBM Research. Archived from the original on 9 August 2009. Retrieved 14 July 2009.
  8. ^ "Silicon Photonics". Intel. Archived from the original on 28 June 2009. Retrieved 14 July 2009.
  9. ^ SPIE (5 March 2015). "Yurii A. Vlasov plenary presentation: Silicon Integrated Nanophotonics: From Fundamental Science to Manufacturable Technology". SPIE Newsroom. doi:10.1117/2.3201503.15.
  10. ^ Dekker, R; Usechak, N; Först, M; Driessen, A (2008). "Ultrafast nonlinear all-optical processes in silicon-on-insulator waveguides" (PDF). Journal of Physics D. 40 (14): R249–R271. Bibcode:2007JPhD...40..249D. doi:10.1088/0022-3727/40/14/r01. S2CID 123008652.
  11. ^ Butcher, Paul N.; Cotter, David (1991). The elements of nonlinear optics. Cambridge University Press. ISBN 0-521-42424-0.
  12. ^ Talebi Fard, Sahba; Grist, Samantha M.; Donzella, Valentina; Schmidt, Shon A.; Flueckiger, Jonas; Wang, Xu; Shi, Wei; Millspaugh, Andrew; Webb, Mitchell; Ratner, Daniel M.; Cheung, Karen C.; Chrostowski, Lukas (2013). "Label-free silicon photonic biosensors for use in clinical diagnostics". In Kubby, Joel; Reed, Graham T (eds.). Silicon Photonics VIII. Vol. 8629. p. 862909. doi:10.1117/12.2005832. S2CID 123382866.
  13. ^ Donzella, Valentina; Sherwali, Ahmed; Flueckiger, Jonas; Grist, Samantha M.; Fard, Sahba Talebi; Chrostowski, Lukas (2015). "Design and fabrication of SOI micro-ring resonators based on sub-wavelength grating waveguides". Optics Express. 23 (4): 4791–803. Bibcode:2015OExpr..23.4791D. doi:10.1364/OE.23.004791. PMID 25836514.
  14. ^ Hsieh, I.-Wei; Chen, Xiaogang; Dadap, Jerry I.; Panoiu, Nicolae C.; Osgood, Richard M.; McNab, Sharee J.; Vlasov, Yurii A. (2006). "Ultrafast-pulse self-phase modulation and third-order dispersion in Si photonic wire-waveguides". Optics Express. 14 (25): 12380–12387. Bibcode:2006OExpr..1412380H. doi:10.1364/OE.14.012380. PMID 19529669.
  15. ^ Zhang, Jidong; Lin, Qiang; Piredda, Giovanni; Boyd, Robert W.; Agrawal, Govind P.; Fauchet, Philippe M. (2007). "Optical solitons in a silicon waveguide". Optics Express. 15 (12): 7682–7688. Bibcode:2007OExpr..15.7682Z. doi:10.1364/OE.15.007682. PMID 19547096. S2CID 26807722.
  16. ^ Ding, W.; Benton, C.; Gorbach, A. V.; Wadsworth, W. J.; Knight, J. C.; Skryabin, D. V.; Gnan, M.; Sorrel, M.; de la Rue, R. M. (2008). "Solitons and spectral broadening in long silicon-on- insulator photonic wires". Optics Express. 16 (5): 3310–3319. Bibcode:2008OExpr..16.3310D. doi:10.1364/OE.16.003310. PMID 18542420.