Silicon photonic devices can be made using existing semiconductor fabrication techniques, and because silicon is already used as the substrate for most integrated circuits, it is possible to create hybrid devices in which the optical and electronic components are integrated onto a single microchip.[6] Consequently, silicon photonics is being actively researched by many electronics manufacturers including IBM and Intel, as well as by academic research groups, as a means for keeping on track with Moore's Law, by using optical interconnects to provide faster data transfer both between and within microchips.[7][8][9]
The propagation of light through silicon devices is governed by a range of nonlinear optical phenomena including the Kerr effect, the Raman effect, two-photon absorption and interactions between photons and free charge carriers.[10] The presence of nonlinearity is of fundamental importance, as it enables light to interact with light,[11] thus permitting applications such as wavelength conversion and all-optical signal routing, in addition to the passive transmission of light.
Silicon waveguides are also of great academic interest, due to their unique guiding properties, they can be used for communications, interconnects, biosensors,[12][13] and they offer the possibility to support exotic nonlinear optical phenomena such as soliton propagation.[14][15][16]
^SPIE (5 March 2015). "Yurii A. Vlasov plenary presentation: Silicon Integrated Nanophotonics: From Fundamental Science to Manufacturable Technology". SPIE Newsroom. doi:10.1117/2.3201503.15.
^Talebi Fard, Sahba; Grist, Samantha M.; Donzella, Valentina; Schmidt, Shon A.; Flueckiger, Jonas; Wang, Xu; Shi, Wei; Millspaugh, Andrew; Webb, Mitchell; Ratner, Daniel M.; Cheung, Karen C.; Chrostowski, Lukas (2013). "Label-free silicon photonic biosensors for use in clinical diagnostics". In Kubby, Joel; Reed, Graham T (eds.). Silicon Photonics VIII. Vol. 8629. p. 862909. doi:10.1117/12.2005832. S2CID123382866.