The concept of single-cell analysis originated in the 1970s. Before the discovery of heterogeneity, single-cell analysis mainly referred to the analysis or manipulation of an individual cell within a bulk population of cells under the influence of a particular condition using optical or electron microscopy.[5] Due to the heterogeneity seen in both eukaryotic and prokaryotic cell populations, analyzing the biochemical processes and features of a single cell makes it possible to discover mechanisms which are too subtle or infrequent to be detectable when studying a bulk population of cells; in conventional multi-cell analysis, this variability is usually masked by the average behavior of the larger population.[6] Technologies such as fluorescence-activated cell sorting (FACS) allow the precise isolation of selected single cells from complex samples, while high-throughput single-cell partitioning technologies[7][8][9] enable the simultaneous molecular analysis of hundreds or thousands of individual unsorted cells; this is particularly useful for the analysis of variations in gene expression between genotypically identical cells, allowing the definition of otherwise undetectable cell subtypes.
The development of new technologies is increasing scientists' ability to analyze the genome and transcriptome of single cells,[10] and to quantify their proteome and metabolome.[11][12][13]Mass spectrometry techniques have become important analytical tools for proteomic and metabolomic analysis of single cells.[14][15] Recent advances have enabled the quantification of thousands of proteins across hundreds of single cells,[16] making possible new types of analysis.[17][18]In situ sequencing and fluorescence in situ hybridization (FISH) do not require that cells be isolated and are increasingly being used for analysis of tissues.[19]
^Loo J, Ho H, Kong S, Wang T, Ho Y (September 2019). "Technological Advances in Multiscale Analysis of Single Cells in Biomedicine". Advanced Biosystems. 3 (11): e1900138. doi:10.1002/adbi.201900138. PMID32648696. S2CID203101696.