Slater's rules

In quantum chemistry, Slater's rules provide numerical values for the effective nuclear charge in a many-electron atom. Each electron is said to experience less than the actual nuclear charge, because of shielding or screening by the other electrons. For each electron in an atom, Slater's rules provide a value for the screening constant, denoted by s, S, or σ, which relates the effective and actual nuclear charges as

The rules were devised semi-empirically by John C. Slater and published in 1930.[1]

Revised values of screening constants based on computations of atomic structure by the Hartree–Fock method were obtained by Enrico Clementi et al. in the 1960s.[2][3]

  1. ^ Slater, J. C. (1930). "Atomic Shielding Constants" (PDF). Phys. Rev. 36 (1): 57–64. Bibcode:1930PhRv...36...57S. doi:10.1103/PhysRev.36.57. Archived from the original (PDF) on 2012-03-23.
  2. ^ Clementi, E.; Raimondi, D. L. (1963). "Atomic Screening Constants from SCF Functions". J. Chem. Phys. 38 (11): 2686–2689. Bibcode:1963JChPh..38.2686C. doi:10.1063/1.1733573.
  3. ^ Clementi, E.; Raimondi, D. L.; Reinhardt, W. P. (1967). "Atomic Screening Constants from SCF Functions. II. Atoms with 37 to 86 Electrons". Journal of Chemical Physics. 47 (4): 1300–1307. Bibcode:1967JChPh..47.1300C. doi:10.1063/1.1712084.