Soft microprocessor

A soft microprocessor (also called softcore microprocessor or a soft processor) is a microprocessor core that can be wholly implemented using logic synthesis. It can be implemented via different semiconductor devices containing programmable logic (e.g., FPGA, CPLD), including both high-end and commodity variations.[1]

Most systems, if they use a soft processor at all, only use a single soft processor. However, a few designers tile as many soft cores onto an FPGA as will fit.[2] In those multi-core systems, rarely used resources can be shared between all the cores in a cluster.

While many people put exactly one soft microprocessor on a FPGA, a sufficiently large FPGA can hold two or more soft microprocessors, resulting in a multi-core processor. The number of soft processors on a single FPGA is limited only by the size of the FPGA.[3] Some people have put dozens or hundreds of soft microprocessors on a single FPGA.[4][5][6][7][8] This is one way to implement massive parallelism in computing and can likewise be applied to in-memory computing.

A soft microprocessor and its surrounding peripherals implemented in a FPGA is less vulnerable to obsolescence than a discrete processor.[9][10][11]

  1. ^ http://www.dailycircuitry.com/2011/10/zet-soft-core-running-windows-30.html Archived 2018-10-13 at the Wayback Machine "Zet soft core running Windows 3.0" by Andrew Felch 2011
  2. ^ "Embedded.com - FPGA Architectures from 'A' to 'Z' : Part 2". Archived from the original on 2007-10-08. Retrieved 2012-08-18. "FPGA Architectures from 'A' to 'Z'" by Clive Maxfield 2006
  3. ^ MicroBlaze Soft Processor: Frequently Asked Questions Archived 2011-10-27 at the Wayback Machine
  4. ^ István Vassányi. "Implementing processor arrays on FPGAs". 1998. [1]
  5. ^ Zhoukun WANG and Omar HAMMAMI. "A 24 Processors System on Chip FPGA Design with Network on Chip". [2]
  6. ^ John Kent. "Micro16 Array - A Simple CPU Array" [3]
  7. ^ Kit Eaton. "1,000 Core CPU Achieved: Your Future Desktop Will Be a Supercomputer". 2011. [4]
  8. ^ "Scientists Squeeze Over 1,000 Cores onto One Chip". 2011. [5] Archived 2012-03-05 at the Wayback Machine
  9. ^ Joe DeLaere. ""Top 7 Reasons to Replace Your Microcontroller with a MAX 10 FPGA"" (PDF).
  10. ^ John Swan; Tomek Krzyzak. (2008). ""Using FPGAs to avoid microprocessor obsolescence"". Archived from the original on 2016-10-13.
  11. ^ Staff (2010-02-03). "FPGA processor IP needs to be supported". Electronics Weekly. Retrieved 2019-04-03.