Solar eclipse of March 18, 1950 | |
---|---|
Type of eclipse | |
Nature | Annular |
Gamma | 0.9988 |
Magnitude | 0.962 |
Maximum eclipse | |
Duration | - |
Coordinates | 60°54′S 40°54′E / 60.9°S 40.9°E |
Max. width of band | - km |
Times (UTC) | |
Greatest eclipse | 15:32:01 |
References | |
Saros | 119 (62 of 71) |
Catalog # (SE5000) | 9398 |
An annular solar eclipse occurred at the Moon's ascending node of orbit on Saturday, March 18, 1950,[1] with a magnitude of 0.962. A solar eclipse occurs when the Moon passes between Earth and the Sun, thereby totally or partly obscuring the image of the Sun for a viewer on Earth. An annular solar eclipse occurs when the Moon's apparent diameter is smaller than the Sun's, blocking most of the Sun's light and causing the Sun to look like an annulus (ring). An annular eclipse appears as a partial eclipse over a region of the Earth thousands of kilometres wide. Occurring about 3.8 days before apogee (on March 22, 1950, at 10:50 UTC), the Moon's apparent diameter was smaller.[2]
It was unusual in that while it is an annular solar eclipse, it is not a central solar eclipse. A non-central eclipse is one where the center-line of annularity or totality, whatever it is, does not intersect the surface of the Earth (when the gamma is between 0.9972 and 1.0260). This rare type occurs when annularity is only visible at sunset or sunrise in a polar region.
Annularity was visible from a part of Antarctica. A partial eclipse was visible for extreme southern South America, Antarctica, and Southern Africa. This was the last of 54 umbral solar eclipses in Solar Saros 119.