In geometry, a solid of revolution is a solid figure obtained by rotating a plane figure around some straight line (the axis of revolution), which may not intersect the generatrix (except at its boundary). The surface created by this revolution and which bounds the solid is the surface of revolution.
Assuming that the curve does not cross the axis, the solid's volume is equal to the length of the circle described by the figure's centroid multiplied by the figure's area (Pappus's second centroid theorem).
A representative disc is a three-dimensional volume element of a solid of revolution. The element is created by rotating a line segment (of length w) around some axis (located r units away), so that a cylindrical volume of πr2w units is enclosed.