This article needs additional citations for verification. (August 2023) |
Space manufacturing or In-space manufacturing (ISM in short) is the fabrication, assembly or integration of tangible goods beyond Earth's atmosphere (or more generally, outside a planetary atmosphere), involving the transformation of raw or recycled materials into components, products, or infrastructure in space, where the manufacturing process is executed either by humans or automated systems by taking advantage of the unique characteristics of space.[3] Synonyms of Space/In-space manufacturing are In-orbit manufacturing (since most production capabilities are limited to low Earth orbit), Off-Earth manufacturing, Space-based manufacturing, Orbital manufacturing, In-situ manufacturing, In-space fabrication, In-space production, etc.[3]
Three major domains of In-space manufacturing are ISM for space (space-for-space) where products remain in space, ISM for Earth (space-for-Earth) where goods with improved properties produced in outer-space microgravity are transported back to Earth, and ISM for surface where goods are produced on or sent to surfaces of celestial bodies like the Moon, Mars, and asteroids.[3]
In-space manufacturing uses processes such as additive manufacturing (printing a 3D object in successive layers), subtractive manufacturing (making 3D objects by successively removing material from a solid), hybrid manufacturing (usually combining additive manufacturing and subtractive manufacturing) and welding (joining pieces of material by melting or plasticizing along a joint line).[4]
In-space manufacturing removes spacecraft design limitations due to launch parameters (mass, vibration, structural load, etc.) and volume limitations imposed by payload size. It allows for recycling of launched materials, utilization space-mined resources and on-demand spare parts production, which enables on-site repair of critical parts (increasing reliability and redundancy) and infrastructure development. It takes advantage of unique space features such as microgravity, ultra-vacuum and containerless processing, which are difficult to do on Earth.[3][4]
In-space manufacturing is a part of the broader activity of In-space servicing, assembly and manufacturing (ISAM) and is related to in situ resource utilization (ISRU).[3]